Real and Complex Analysis

Third Edition
Walter Rudin

实分析与复分析

(原书第三版)
(美)沃特・卢丁 著

Prologue

The Exponential Function

引言

指数函数

This is the most important function in mathematics. It is defined, for every complex number z, by the formula

在数学中这是一个最重要的函数。它是用公式来定义的,对每个复数z,规定

⦅1⦆
exp ( z ) = n = 0 z n n !

The series ⦅1⦆ converges absolutely, for every z and converges uniformly on every bounded subset of thc complex plane. Thus exp is a continuous function. The absolute convergence of ⦅1⦆ shows that the computation

级教⦅1⦆对每个z绝对收敛,对复平面的每个有界子集一致收敛。因此,exp是连续函数。⦅1⦆的绝对收敛指出了算式

k = 0 a k k ! m = 0 b m m ! = n = 0 1 n ! k = 0 n n ! k ! ( n - k ) ! a k b n - k = n = 0 ( a + b ) n n !

is correct. It gives the important addition formula

是正确的。它给出了重要的加法公式

⦅2⦆
exp ( a ) exp ( b ) = exp ( a + b )

valid for all complex numbers a and b.

此公式对所有复数ab是正确的。

We define the number e to be exp(1), and shall usually replace exp(z) by the customary shorter expression ex. Note that e0 = exp(0) = 1, by ⦅1⦆.

我们规定数eexp(1)。习惯上常用较短的表达式ex代替exp(z)。注意,由⦅1⦆可得e0 = exp(0) = 1

Theorem

  1. For every complex z we have ex ≠ 0.
  2. exp is its own derivative: exp′(z) = exp(z).
  3. The restriction of exp to the real axis is a monotonically increasing positive function, and ex→∞ as x→∞, ex→0 as x→-∞.
  4. There exists a positive number π such that eπi/2 = i and such that ez = 1 if and only if z/(2πi) is an integer.
  5. exp is a periodic function, with period 2πi.
  6. The mapping t→eit maps the real axis onto the unit circle.
  7. If w is a complex number and w ≠ 0, then w = ez for some z.

定理

  1. 对每一个复数zex ≠ 0
  2. exp的导数是它自己:exp′(z) = exp(z)
  3. exp限制在实轴上是单调增加的正函数,且当x→∞ex→∞;当x→-∞ex→0
  4. 存在一个正数π使得eπi/2 = i,并使得ez = 1当且仅当z/(2πi)是整数,
  5. exp是周期函数,其周期是2πi
  6. 映射t→eit将实轴映到单位圆上。
  7. w是复教且w ≠ 0,则存在某个z使w = ez

Proof

证明

By ⦅2⦆, ez ⋅ e-z = ez-z = e0 = 1. This implies ⦅a⦆. Next,

由⦅2⦆,ez ⋅ e-z = ez-z = e0 = 1。由此得到⦅a⦆。其次,

exp ( z ) = lim h 0 exp ( z + h ) - exp ( z ) h = exp ( z ) lim h 0 exp ( h ) - 1 h = exp ( z )

The first of the above equalities is a matter of definition, the second follows from ⦅2⦆, and the third from ⦅1⦆, and ⦅b⦆ is proved.

在上述等式中.第一个是定义,第二个从⦅2⦆得到,而第三个从⦅1⦆得到,因此证明了⦅b⦆。

That exp is monotonically increasing on the positive real axis, and that ex→∞ as x→∞, is clear from ⦅1⦆. The other assertions of ⦅c⦆ are consequences of ex ⋅ e-x = 1

由于⦅1⦆。显然exp在正实轴上是单调增加的.而且当x→∞ex→∞。⦅c⦆的另一个断言是ex ⋅ e-x = 1的推论。

For any real number t, ⦅1⦆ Shows that e-it is the complex conjugate Of eit。Thus

对于任何实数t,⦅1⦆表示e-iteit的共轭复数。因此

| e i t | 2 = e i t e i t ¯ = e i t e - i t = e i t - i t = e 0 = 1

or

⦅3⦆
| e i t | = 1 ( t R ) .

In other words, if t is real, eit lies on the unit circle. We define cos t, sin t to be the real and imaginary parts of eit:

换句话说,若t为实数.则eit位于单位圆上。我们定义cos tsin teit的实部和虚部:

⦅4⦆
cos t = Re [ e i t ] , sin t = Im [ e i t ] ( t R ) .

If we differentiate both sides of Euler′s identity

若对等价于⦅4⦆的欧拉恒等式

⦅5⦆
e i t = cos t + i sin t

which is equivaIent to ⦅4⦆, and if we apply ⦅b⦆, we obtain

两边微分,并且应用⦅b⦆,则得

cos t + i sin t = i e i t = - sin t + i cos t

so that

于是

⦅6⦆
cos = - sin , sin = cos .

The power series ⦅1⦆ yields the representation

幂级数⦅1⦆给出表示式

⦅7⦆
cos t = 1 - t 2 2 ! + t 4 4 ! - t 6 6 ! +

Take t = 2. The terms of the series ⦅7⦆ then decrease in absolute value (except for the first one) and their signs alternate. Hence cos 2 is less than the sum of the first three terms of ⦅7⦆, with t = 2; thus cos 2 < -⅓. Since cos 0 = 1 and cos is a continuous real function on the real axis, we conclude that there is a smallest positive number t0 for which cos t0 = 0. We define

t = 2,则级数⦅7⦆的各项按绝对值减少(除首项外),而且它们的符号是交错的.因此cos 2小于级数⦅7⦆的前三项之和;于是cos 2 < -⅓。由于cos 0 = 1cos是实轴上的实连续函数.故可断定存在一个最小的正数t0使得cos t0 = 0。我们定义

⦅8⦆
π = 2 t 0

It follows from ⦅3⦆ and ⦅5⦆ that sin t0 = ± 1. Since

从⦅3⦆及⦅5⦆得到sin t0 = ± 1。由于在开区间(0, t0)上,有

sin ( t ) = cos t > 0

on the segment (0, t0) and since sin 0 = 0, we have sin t0 > 0, hence sin t0 = 1, and therefore

sin 0 = 0,故有sin t0 > 0,因此sin t0 = 1,而且

⦅9⦆
e π i 2 = i .

It follows that eπi = i2 = -1, e2πi = (-1)2 = 1, and then e2πin = 1 for every integer n. Also, ⦅e⦆ follows immediately:

由此可见,eπi = i2 = -1e2πi = (-1)2 = 1,并且对每个正整数ne2πin = 1。同样立即得到⦅e⦆:

⦅10⦆
e z + 2 π i = e z e 2 π i = e z .

If z = x + iy, x and y real, then ez = exeiy; hence |ez| = ex. If ez = 1, we therefore must have ex = 1, so that x = 0; to prove that y/(2π) must be an integer, it is enough to show that eiy ≠ 1 if 0 < y < 2π, by ⦅10⦆.

z = x + iyxy为实教,则ez = exeiy;因此|ez| = ex。若ez = 1,则必须有ex = 1,从而x = 0;根据⦅10⦆,为了证明y/(2π)一定是整数,只要证明当0 < y < 2π时,eiy ≠ 1就足够了。

Suppose 0 < y < 2π, and

0 < y < 2π,且

⦅11⦆
e i y 4 = u + i v ( u , v R ) .

Since 0 < y/4 < π/2, we have u > 0 and v > 0. Also

由于0 < y/4 < π/2,故有u > 0v > 0。同样

⦅12⦆
e i y = ( u + i v ) 4 = u 4 - 6 u 2 v 2 + v 4 + 4 i u v ( u 2 - v 2 ) .

The right side of ⦅12⦆ is real only if u2 = v2; since u2 + v2 = 1, this happens only when u2 = v2 = ½, and then ⦅12⦆ shows that

仅当u2 = v2时,⦅12⦆的右边才是实数;由于u2 + v2 = 1仅当u2 = v2 = ½时才成立,因此⦅12⦆表明

e i y = - 1 1 .

This completes the proof of ⦅d⦆.

这就证明了⦅d⦆。

We already know that t → eit maps the real axis into the unit circle. To prove ⦅f⦆, fix w so that |w| = 1; we shall show that w = eit for some real t. Write w = u + iv, u and v real, and suppose first that u ≧ 0 and v ≧ 0. Since u ≦ 1, the definition of π shows that there exists a t, 0 ≦ t ≦ π/2, such that cos t = u; then sin2 t = 1 - u2 = v2, and since sin t ≧ 0 if 0 ≦ t ≦ π/2, we have sin t = v. Thus w = eit.

我们已经知道,t → eit将实轴映入单位圆内。为了证明⦅f⦆,现固定w使得|w| = 1。我们将要证明,存在某个实数t使w = eit。记w = u + ivuv为实数.而且首先假定u ≧ 0v ≧ 0。由于u ≦ 1,则π的定义表明存在一个t0 ≦ t ≦ π/2,使得cos t = u;因而sin2 t = 1 - u2 = v2,又由于当0 ≦ t ≦ π/2时有sin t ≧ 0,故sin t = v。因此w = eit

If u < 0 and v ≧ 0, the preceding conditions are satisfied by -iw. Hence -iw = eit for some real t, and w = ei(t+π/2). Finally, if v < 0. the preceding two cases show that -w = eit for some real t, hence w = ei(t+π) This completes the proof of ⦅f⦆.

u < 0v ≧ 0,则-iw满足上述条件。因此,存在某个实数t使-iw = eit,而且w = ei(t+π/2)。最后,若v < 0,则上述两种情况证明了,存在某些实数t使-w = eit,因此w = ei(t+π)。这就证明了⦅f⦆。

If w ≠ 0, put α = w / |w|. Then w = |w|α. By ⦅c⦆, there is a real x such that |w| = ex. Since |α| = 1, ⦅f⦆ shows that α = eiy for some real y. Hence w = ex + iy. This proves ⦅g⦆ and completes the theorem. ▮

w ≠ 0α = w / |w|,因而w = |w|α。根据⦅c⦆,有一个实数x使得|w| = ex。由于|α| = 1,则⦅f⦆证明了,对于某些实数yα = eiy。因此w = ex + iy。这就证明了⦅g⦆,并且完成了定理的证明。 ▮

We shall encounter the integral of (1 + x2)-1 over the real line. To evaluate, put φ(t) = sin t / cos t in (-π/2, π/2). By ⦅6⦆, φ′ = 1 + φ2. Hence φ is a monotonically increasing mapping of (-π/2, π/2) onto (-∞, ∞), and we obtain

我们将遇到(1 + x2)-1在实线上的积分。为了求它的值,在(-π/2, π/2)内,令φ(t) = sin t / cos t ,根据⦅6⦆有φ′ = 1 + φ2。因此,φ是一个(-π/2, π/2)(-∞, ∞)上的单调增加的映射,而且得到

- d x 1 + x 2 = - π / 2 π / 2 ϕ ( t ) d t 1 + ϕ 2 ( t ) = - π / 2 π / 2 d t = π .

Comment

(none)

原注

(无)

译注

(无)