This is the most important function in mathematics. It is defined, for every complex number z, by the formula
在数学中这是一个最重要的函数。它是用公式来定义的,对每个复数z,规定
The series ⦅1⦆ converges absolutely, for every z and converges uniformly on every bounded subset of thc complex plane. Thus exp is a continuous function. The absolute convergence of ⦅1⦆ shows that the computation
级教⦅1⦆对每个z绝对收敛,对复平面的每个有界子集一致收敛。因此,exp是连续函数。⦅1⦆的绝对收敛指出了算式
is correct. It gives the important addition formula
是正确的。它给出了重要的加法公式
valid for all complex numbers a and b.
此公式对所有复数a和b是正确的。
We define the number e to be exp(1), and shall usually replace exp(z) by the customary shorter expression ex. Note that e0 = exp(0) = 1, by ⦅1⦆.
我们规定数e是exp(1)。习惯上常用较短的表达式ex代替exp(z)。注意,由⦅1⦆可得e0 = exp(0) = 1。
By ⦅2⦆, ez ⋅ e-z = ez-z = e0 = 1. This implies ⦅a⦆. Next,
由⦅2⦆,ez ⋅ e-z = ez-z = e0 = 1。由此得到⦅a⦆。其次,
The first of the above equalities is a matter of definition, the second follows from ⦅2⦆, and the third from ⦅1⦆, and ⦅b⦆ is proved.
在上述等式中.第一个是定义,第二个从⦅2⦆得到,而第三个从⦅1⦆得到,因此证明了⦅b⦆。
That exp is monotonically increasing on the positive real axis, and that ex→∞ as x→∞, is clear from ⦅1⦆. The other assertions of ⦅c⦆ are consequences of ex ⋅ e-x = 1。
由于⦅1⦆。显然exp在正实轴上是单调增加的.而且当x→∞时ex→∞。⦅c⦆的另一个断言是ex ⋅ e-x = 1的推论。
For any real number t, ⦅1⦆ Shows that e-it is the complex conjugate Of eit。Thus
对于任何实数t,⦅1⦆表示e-it是eit的共轭复数。因此
or
或
In other words, if t is real, eit lies on the unit circle. We define cos t, sin t to be the real and imaginary parts of eit:
换句话说,若t为实数.则eit位于单位圆上。我们定义cos t,sin t为eit的实部和虚部:
If we differentiate both sides of Euler′s identity
若对等价于⦅4⦆的欧拉恒等式
which is equivaIent to ⦅4⦆, and if we apply ⦅b⦆, we obtain
两边微分,并且应用⦅b⦆,则得
so that
于是
The power series ⦅1⦆ yields the representation
幂级数⦅1⦆给出表示式
Take t = 2. The terms of the series ⦅7⦆ then decrease in absolute value (except for the first one) and their signs alternate. Hence cos 2 is less than the sum of the first three terms of ⦅7⦆, with t = 2; thus cos 2 < -⅓. Since cos 0 = 1 and cos is a continuous real function on the real axis, we conclude that there is a smallest positive number t0 for which cos t0 = 0. We define
取t = 2,则级数⦅7⦆的各项按绝对值减少(除首项外),而且它们的符号是交错的.因此cos 2小于级数⦅7⦆的前三项之和;于是cos 2 < -⅓。由于cos 0 = 1且cos是实轴上的实连续函数.故可断定存在一个最小的正数t0使得cos t0 = 0。我们定义
It follows from ⦅3⦆ and ⦅5⦆ that sin t0 = ± 1. Since
从⦅3⦆及⦅5⦆得到sin t0 = ± 1。由于在开区间(0, t0)上,有
on the segment (0, t0) and since sin 0 = 0, we have sin t0 > 0, hence sin t0 = 1, and therefore
又sin 0 = 0,故有sin t0 > 0,因此sin t0 = 1,而且
It follows that eπi = i2 = -1, e2πi = (-1)2 = 1, and then e2πin = 1 for every integer n. Also, ⦅e⦆ follows immediately:
由此可见,eπi = i2 = -1,e2πi = (-1)2 = 1,并且对每个正整数n,e2πin = 1。同样立即得到⦅e⦆:
If z = x + iy, x and y real, then ez = exeiy; hence |ez| = ex. If ez = 1, we therefore must have ex = 1, so that x = 0; to prove that y/(2π) must be an integer, it is enough to show that eiy ≠ 1 if 0 < y < 2π, by ⦅10⦆.
若z = x + iy,x和y为实教,则ez = exeiy;因此|ez| = ex。若ez = 1,则必须有ex = 1,从而x = 0;根据⦅10⦆,为了证明y/(2π)一定是整数,只要证明当0 < y < 2π时,eiy ≠ 1就足够了。
Suppose 0 < y < 2π, and
设0 < y < 2π,且
Since 0 < y/4 < π/2, we have u > 0 and v > 0. Also
由于0 < y/4 < π/2,故有u > 0,v > 0。同样
The right side of ⦅12⦆ is real only if u2 = v2; since u2 + v2 = 1, this happens only when u2 = v2 = ½, and then ⦅12⦆ shows that
仅当u2 = v2时,⦅12⦆的右边才是实数;由于u2 + v2 = 1仅当u2 = v2 = ½时才成立,因此⦅12⦆表明
This completes the proof of ⦅d⦆.
这就证明了⦅d⦆。
We already know that t → eit maps the real axis into the unit circle. To prove ⦅f⦆, fix w so that |w| = 1; we shall show that w = eit for some real t. Write w = u + iv, u and v real, and suppose first that u ≧ 0 and v ≧ 0. Since u ≦ 1, the definition of π shows that there exists a t, 0 ≦ t ≦ π/2, such that cos t = u; then sin2 t = 1 - u2 = v2, and since sin t ≧ 0 if 0 ≦ t ≦ π/2, we have sin t = v. Thus w = eit.
我们已经知道,t → eit将实轴映入单位圆内。为了证明⦅f⦆,现固定w使得|w| = 1。我们将要证明,存在某个实数t使w = eit。记w = u + iv,u和v为实数.而且首先假定u ≧ 0及v ≧ 0。由于u ≦ 1,则π的定义表明存在一个t,0 ≦ t ≦ π/2,使得cos t = u;因而sin2 t = 1 - u2 = v2,又由于当0 ≦ t ≦ π/2时有sin t ≧ 0,故sin t = v。因此w = eit。
If u < 0 and v ≧ 0, the preceding conditions are satisfied by -iw. Hence -iw = eit for some real t, and w = ei(t+π/2). Finally, if v < 0. the preceding two cases show that -w = eit for some real t, hence w = ei(t+π) This completes the proof of ⦅f⦆.
若u < 0而v ≧ 0,则-iw满足上述条件。因此,存在某个实数t使-iw = eit,而且w = ei(t+π/2)。最后,若v < 0,则上述两种情况证明了,存在某些实数t使-w = eit,因此w = ei(t+π)。这就证明了⦅f⦆。
If w ≠ 0, put α = w / |w|. Then w = |w|α. By ⦅c⦆, there is a real x such that |w| = ex. Since |α| = 1, ⦅f⦆ shows that α = eiy for some real y. Hence w = ex + iy. This proves ⦅g⦆ and completes the theorem. ▮
若w ≠ 0令α = w / |w|,因而w = |w|α。根据⦅c⦆,有一个实数x使得|w| = ex。由于|α| = 1,则⦅f⦆证明了,对于某些实数y有α = eiy。因此w = ex + iy。这就证明了⦅g⦆,并且完成了定理的证明。 ▮
We shall encounter the integral of (1 + x2)-1 over the real line. To evaluate, put φ(t) = sin t / cos t in (-π/2, π/2). By ⦅6⦆, φ′ = 1 + φ2. Hence φ is a monotonically increasing mapping of (-π/2, π/2) onto (-∞, ∞), and we obtain
我们将遇到(1 + x2)-1在实线上的积分。为了求它的值,在(-π/2, π/2)内,令φ(t) = sin t / cos t ,根据⦅6⦆有φ′ = 1 + φ2。因此,φ是一个(-π/2, π/2)到(-∞, ∞)上的单调增加的映射,而且得到
(none)
(无)
(无)